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Value-at-Risk

Overview of Value-at-Risk

Definition of Value-at-Risk

Why Value-at-Risk?

� Value-at-Risk (VaR) of a portfolio: single number summarizing risk
of large and complex portfolios

� “How much can we lose?” You can’t refuse to answer!
� Encompasses different asset types

� Reasonably accurate for many types of portfolios

� Unusual but recurrent losses, not extremes

� VaR limit system: position size limits based on VaR

� Form of risk budgeting
� Widely-used to control risk while giving some discretion to individual

trading desks

� Can be computed using broad range of return models, estimation
method, data sources

� Most importantly, we can learn a lot from criticizing it!
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Value-at-Risk

Overview of Value-at-Risk

Definition of Value-at-Risk

Definition: VaR is a quantile
� VaR of a portfolio: a quantile of the portfolio loss distribution

� Loss distribution: −1× profit-and-loss (P&L) distribution
� Loss and VaR defined as positive numbers, in dollar or return units

� p-quantile of a random variable (r.v.) X :

X ◦ s.t. P [X ≤ X ◦] = p

� The value X ◦ with cumulative probability p

� Threshold X ◦ below which realizations of X fall with frequency p

� To define VaR, let X represent the r.v. loss distribution, and α the
confidence level of the VaR estimate

� VaR at confidence level α is α-quantile of loss distribution
� Probability of losing no more than the VaR is α, e.g., 99 percent
� Probability of suffering loss worse than VaR is 1− α, e.g., 1 percent

� Daily VaR at 95 (99) percent confidence level should occur roughly
one in 20 trading days, or once per month (twice a year)
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Value-at-Risk

Overview of Value-at-Risk

Definition of Value-at-Risk

Example of a quantile and VaR

� With Φ(X ) the standard normal
c.d.f., zp = Φ−1(p) is the standard
normal inverse cumulative
distribution or quantile function

� Example: next-day level of S&P
500 as of 28Aug2013

� Changes in S&P lognormally
distributed⇒ S&P log return
normally distributed

� Quantiles of S&P log return =
standard normal quantiles ×
estimated return volatility
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Value-at-Risk

Overview of Value-at-Risk

Definition of Value-at-Risk

Common misconceptions about VaR

� VaR wedded to normally-distributed return model

� Or to a particular way of using market data

� And some outright distortions, e.g. “VaR is the most I can lose”

� Complex pros and cons for each judgement call in VaR modeling

� But need for judgement calls in risk modeling not unique to VaR
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Value-at-Risk

Overview of Value-at-Risk

Definition of Value-at-Risk

The VaR scenario

� The VaR scenario is the quantile of P&L corresponding to the
chosen confidence level

� Can be stated as P&L (in currency units) or as adverse return
(decimal or percent)

� Models generally based on distributional hypothesis about log
returns

� VaR scenario stated as log return r◦ corresponds to P&L xSt(e
r◦ − 1)

� VaR scenario stated as arithmetic return rarith,◦ = er
◦ − 1

corresponds to same P&L xSt r
arith,◦
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Value-at-Risk

Overview of Value-at-Risk

Definition of Value-at-Risk

VaR example
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1-day VaR of a long S&P 500 index position on 28Aug2013. Volatility computed via
EWMA with a decay factor of 0.94. Grid lines at VaR scenarios for confidence levels of
95 and 99 percent. VaR is the difference between the index value in the VaR scenario
and 1634.96, its 28Aug2013 closing value, times the number of index units held.
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Value-at-Risk

Overview of Value-at-Risk

Modeling choices in VaR estimation

How to compute VaR

Three basic approaches to identifying the VaR scenario:

Parametric is a simple approach relying on a formula based on a
hypothesized return distribution plus a volatility estimate

Monte Carlo simulation uses random draws from a hypothesized return
distribution

� Returns an output of pricing models rather than direct
observations

� Used for portfolios that include derivatives, complex securities,
e.g. MBS

Historical simulation is based on historical returns over some past
observation period, no distributional hypothesis
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Value-at-Risk

Overview of Value-at-Risk

Modeling choices in VaR estimation

Judgments and data decisions in VaR estimation
Distributional hypothesis: What asset return model: normal,

lognormal, t-distribution,...? How estimate parameters: GARCH,
EWMA,...?

Risk factor mapping: VaR generally applied with small number of risk
factors relative to number of positions in portfolio

� Most assets’ market risks more accurately modeled as functions
of factor rather than own-price risks

� E.g. equity risks function of index, Fama-French factors, bonds a
function of key points on interest-rate curve

� Reduces computational complexity
� To which risk factors is portfolio exposed? Many pitfalls, for
example:

� Mapping AAA subprime mortgage bonds to AAA corporate
bonds

� Omitting key risk factor, such as option implied volatility for
option portfolio

Use of historical data: How much history? Include or exclude extreme
and possibly “unique” events?
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Value-at-Risk

Overview of Value-at-Risk

Modeling choices in VaR estimation

User settings in VaR modeling
� User makes decisions based on business application about:

Time horizon τ over which “worst-case” P&L realized
Confidence level α that losses will be no worse than VaR

� VaR is generally higher at longer time horizons and higher
confidence levels

� VaR is generally less accurate at longer time horizons and higher
confidence levels

� Problematic: setting (→)economic capital based VaR
� Capital should be set high enough to cover rare, but large and costly,

losses
� But VaR more accurate at predicting recurrent losses at

“cost-of-doing-business” level
� VaR can be interpreted as maximum loss if extreme event does not

occur

� VaR generally treated as one-tailed test↔one tail corresponds to
losses

� Exceptions include option portfolios
� And not necessarily the left tail (→short positions)
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Value-at-Risk

Computing VaR for one risk factor

Overview of Value-at-Risk

Computing VaR for one risk factor
Data and assumptions
Parametric normal VaR
Computing VaR via Monte Carlo simulation
Computing VaR via historical simulation
VaR for short positions

Comparison of VaR computation approaches
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Value-at-Risk

Computing VaR for one risk factor

Data and assumptions

Typical model assumptions for VaR

� Logarithmic asset price changes rt,t+τ ≡ ln(St+τ )− ln(St) normally
distributed

� Including zero-mean assumption

rt,t+τ ∼ N (0, σ2
t τ)

� Volatility estimate σt based on information up to time t but
constant over any future horizon τ

� ⇒Use square-root-of-time rule to apply volatility estimate to any
horizon

� For confidence level α, 1-day horizon, and for long position in the
risk factor/asset, take 1− α quantile of rt,t+τ

� Parametric: z1−α quantile of standard normal

� Typically a negative number
� Log return in the VaR scenario estimated as z1−ασt

√
τ

� Monte Carlo: 1− α quantile of simulations of rt
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Value-at-Risk

Computing VaR for one risk factor

Data and assumptions

VaR computation example: data and assumptions
� Calculation date 28Aug2013

� Risk factor S&P 500 index, closed at St = 1634.96
� Exposure: long position with initial value xSt =$1 000 000, with
x ≡number of units of asset

� ⇒ x = 1 000 000
1634.96

= 611.636 index units

� One-tailed test at confidence level 99 percent
� Corresponding standard normal quantile z0.01 = −2.32635

� Note that computation doesn’t require x and St individually, just
initial position value xSt and return quantile

� σt estimated at close on 28Aug2013 via EWMA, with λ = 0.94
� Pertains to any future horizon using square-root-of-time rule
� Volatility estimate on 28Aug2013 σt = 0.0069105 or 69 bps/day

� Annualized vol about 11.06 percent, relatively low for S&P

� Used in computing VaR parametrically and via Monte Carlo, not via
historical simulation

� One-day horizon: τ = 1, with time measured in days, volatility at
daily rate
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Value-at-Risk

Computing VaR for one risk factor

Parametric normal VaR

Parametric normal VaR: theory
VaR scenario in log return terms: at 99-percent confidence level, use

0.01-quantile of rt,t+τ z1−ασt

√
τ , the 1− α quantile of rt,t+τ

� Our model tells us the log return is normal

Change in risk factor in VaR scenario: convert log return into
arithmetic return needed to compute P&L

� 1− α quantile of St+τ − St is:

Ste
z1−ασt

√
τ − St = St

(

ez1−ασt

√
τ − 1

)

VaR scenario in P&L terms: 1− α quantile of change in position

value is xSt

(

ez1−ασt

√
τ − 1

)

� Multiplies quantile of change in risk factor by position size x

VaR at confidence level α is P&L quantile expressed as positive number:

VaRt(α, τ) = −xSt

(

ez1−ασt

√
τ − 1

)

= xSt

(

1− ez1−ασt

√
τ

)
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Value-at-Risk

Computing VaR for one risk factor

Parametric normal VaR

Parametric normal VaR: example
VaR scenario in log return terms: a bit over -1 1

2 percent

z0.01σt

√
1 = −2.32635× 0.0069105 = −0.0160762

Change in risk factor in VaR scenario: 0.01-quantile of 1-day change
St+1 − St :

St (e
z0.01σt − 1) = 1634.96(e−0.0160762 − 1) = 1634.96× (−0.0159477)

= 1608.89− 1634.96 = −26.07

VaR scenario in P&L terms:
xSt (e

z0.01σt − 1) = 1 000 000× (−0.0159477)
VaR at a 99-percent confidence level is $15 947.70:

xSt (1− ez0.01σt ) = 1 000 000× 0.0159477 = 15 947.66

� 1-week (5 business days) VaR is $35 309.00:

1 000 000
(

1− e0.0160762
√
5
)

= 1 000 000× 0.035309
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Value-at-Risk

Computing VaR for one risk factor

Parametric normal VaR

A convenient approximation of VaR
� Apply ea − 1 ≈ a to pertinent quantile:

−Stz1−ασt

√
τ ≈ St

(

1− ez1−ασt

√
τ

)

� Use slightly smaller (larger loss) log return in place of arithmetic
return

� Tantamount to assuming arithmetic—not log—returns normally
distributed

� And treats σt as estimate of volatility of arithmetic returns

� Approximation widely used, e.g. in (→)delta-normal approach to
VaR computation

� VaR can also be expressed in return terms, i.e. ≈1.6 percent rather
than ≈$16 000

� Approximation in our example using vol at daily rate:
� 1-day VaR: −xStz0.01σt = $16 076.20
� 5-day VaR: −xStz0.01σt

√
τ = $35 947.50
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via Monte Carlo simulation

Monte Carlo computation of VaR

� Steps in the algorithm:

1. Generate set of, say, 10 000 independent draws ǫi , i = 1, . . . , 10 000
from standard normal

2. Each draw provides a random realization of log return rt+1, ri = σtǫi ,
next-period price Si , position value xSi , and P&L x(Si − St)

3. Sort the realizations in ascending order (largest loss first)

� →order statistics r̃ (i), S̃(i) − St = St

(

e r̃
(i)

− 1
)

or S̃(i) − St ≈ r̃ (i)St

4. The 100th order statistic of P&L ×(−1) corresponds to the VaR at
a 99-percent confidence level

� Monte Carlo requires estimate of volatility and other model
parameters

� In our example, we’ve posited lognormal/zero-drift model
� But as with parametric, no particular model required

� Result $15 912.46 or thereabouts
� User may average or interpolate scenarios near the VaR (in our

example, near the 100th) to reduce simulation noise
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via Monte Carlo simulation

Monte Carlo computation of VaR: example
i r̃ (i) S̃(i) P&L
1 -0.02552 1593.76 -25,198.23
2 -0.02517 1594.33 -24,851.55
3 -0.02477 1594.96 -24,465.89

...
...

...
...

99 -0.01606 1608.92 -15,928.02
100 -0.01604 1608.94 -15,912.46
101 -0.01602 1608.97 -15,893.97
...

...
...

...
4999 0.00005 1635.04 50.42
5000 0.00005 1635.05 53.70
5001 0.00006 1635.05 57.12
..
.

..

.
..
.

..

.
9998 0.02344 1673.73 23,713.88
9999 0.02351 1673.86 23,793.06

10000 0.02407 1674.80 24,365.89

Entries in the second column are r̃(i) = σt ǫ̃
(i) , where the ǫ̃

(i) are the ordered draws from N (0, σ2
t ), with σt = 0.0060762. Entries

in the second column are S̃(i) = St e
r̃(i) . The P&L realizations are 106

(

er̃
(i)

− 1

)

.
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via Monte Carlo simulation

Monte Carlo computation of VaR
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Histogram of Monte Carlo return simulations. Purple plot: density of N (0, σ2
t ), with

σt = 0.0068826.
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via historical simulation

Steps in the algorithm

1. Select a historical “look-back” period, say, 2 years, and compute
t = 1, . . . ,m daily log or arithmetic returns

� Use historical risk factor returns but current portfolio position sizes
or weights

2. From here, procedure identical to Monte Carlo: sort m historical
realizations in ascending order

� Order statistics denoted r̃ (i) or r̃arith,(i), i = 1, . . . ,m

3. Use the r̃ (i) or r̃arith,(i) to get m ordered simulations of P&L:

r̃arith,(i)xSt =
(

e r̃
(i) − 1

)

xSt , i = 1, . . . ,m

4. VaR of long position at confidence level α is ×(−1) the
(1 − α)-quantile of order statistics of P&L
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via historical simulation

Quantiles of empirical distributions

� Different definitions of quantile can lead to different results

� General definition of p-quantile of the distribution of an r.v. X

X ◦ = inf{X |P [X ≤ X ◦] ≥ p}

� p-quantile X ◦ is smallest value of X s.t. the cumulative probability
of X ◦ is at least p

� Applied to VaR at confidence level α: smallest loss X ◦ such that the
probability of a loss no larger than X ◦ is at least α

� Definition applies to both continuous (e.g. normal) and discrete
distributions (e.g. simulations)

� Discrete distributions if (1− α)m an integer

� But leads to unambiguous result only for

� Continuous distributions that are not flat at 1− α

� Discrete distributions if (1− α)m an integer
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via historical simulation

Identifying quantiles of empirical distributions

� General definition consistent with many alternative methods for
empirical distributions

� Which order statistic r̃ (i) represents (1− α)-quantile?

� Most commonly-used is ceiling ⌈(1− α)m⌉ of (1− α)m: smallest
integer ≥ (1− α)m

� Or floor ⌊(1− α)m⌋ of (1− α)m: largest integer ≤ (1− α)m
� Or interpolate between ⌊(1− α)m⌋-th and ⌈(1− α)m⌉-th order

statistics

� These methods lead to same result if (1− α)m an integer
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via historical simulation

Choosing the VaR scenario via historical simulation

� Typically fewer simulations when using historical rather than
computer-generated simulations

� →Potentially material sensitivity of historical simulation result to
choice of quantile definition

� Definition of cumulative probability is asymmetrical: event for which
probability is defined is X ≤ X ◦

� Random variables are right-continuous
� Quantile function therefore left-continuous
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via historical simulation

Example of historical simulation VaR

�

$1 000 000 long position in S&P 500 index

� Using 2 years of price data, 28Aug2011 to 28Aug2013

� m = 503 return observations

� VaR at 99-percent confidence level is $26 705 using most-common
quantile definition, much higher than parametric or Monte Carlo

� (1− α)m = 0.01 · 503 = 5.03
� ⌈(1− α)m⌉ = 6
� -0.02671 is 6th order statistic of arithmetic returns

r̃arith,(i), i = 1, . . . ,m in the historical sample
� 0.02671 is the smallest loss s.t., within the set of return observations,

the frequency of a loss no greater than that is at least 99 percent

� VaR can be reported as lying elsewhere on interval
[

r̃ (5), r̃ (6)
]

bet.
5th and 6th P&L order statistics using alternative quantile definitions
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via historical simulation

Order statistics for historical simulation VaR

i t St date t St−1 r̃ (i) r̃arith,(i) P&L
1 52 1229.10 09Nov2011 1275.92 -0.03739 -0.03670 -36 695.09
2 18 1129.56 22Sep2011 1166.76 -0.03240 -0.03188 -31 883.16
3 17 1166.76 21Sep2011 1202.09 -0.02983 -0.02939 -29 390.48
4 25 1099.23 03Oct2011 1131.42 -0.02886 -0.02845 -28 450.97
5 46 1218.28 01Nov2011 1253.30 -0.02834 -0.02794 -27 942.23
6 9 1154.23 09Sep2011 1185.90 -0.02707 -0.02671 -26 705.46
7 5 1173.97 02Sep2011 1204.42 -0.02561 -0.02528 -25 281.88
8 455 1588.19 20Jun2013 1628.93 -0.02533 -0.02501 -25 010.28
...

...
...

...
...

...
...

...
499 64 1192.55 28Nov2011 1158.67 0.02882 0.02924 29 240.42
500 80 1241.31 20Dec2011 1205.35 0.02940 0.02983 29 833.66
501 30 1194.89 10Oct2011 1155.46 0.03356 0.03412 34 124.94
502 43 1284.59 27Oct2011 1242.00 0.03372 0.03429 34 291.47
503 66 1246.96 30Nov2011 1195.19 0.04240 0.04332 43 315.29

The entries in the last 3 columns are the order statistics of the logarithmic and

arithmetic historical return and P&L realizations: r̃ (i), e r̃
(i)

− 1, and xSm

(

e r̃
(i)

− 1
)

,

i = 1, . . . ,m and m = 503. The VaR scenario is highlighted .
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Computing VaR for one risk factor

Computing VaR via historical simulation

Computation of VaR by historical simulation
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Histogram of historical returns. Purple plot: density of N (0, σ2
t ), with

σt = 0.00691049.
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Value-at-Risk

Computing VaR for one risk factor

Computing VaR via historical simulation

Historical simulation VaR scenario
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Purple points identify (−1)×arithmetic return observations in the left tail. These are
the magnitudes of the return observations leading to the largest observed losses in the
historical sample. Orange point denotes quantile using ⌈(1 − α)m⌉-th order statistic.
With α = 0.99 and m = 503, ⌈(1 − α)m⌉ = 6, and the VaR scenario at a 99-percent
confidence level in arithmetic return terms is -2.671 percent.
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Value-at-Risk

Computing VaR for one risk factor

VaR for short positions

VaR for short positions

� Definition of VaR unchanged: low quantile of P&L

� But x < 0 ⇒VaR return scenario positive, not negative

� Scenario in upper tail of return distribution

� Major drawback of VaR for short positions: doesn’t capture
unlimited downside

� P&L of short→ −∞ as St+τ → ∞
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Value-at-Risk

Computing VaR for one risk factor

VaR for short positions

Normal parametric VaR for short positions

� For confidence level α, use α- rather than (1 − α)-quantile

� VaR log return scenario estimated at t is zασt

√
τ > 0

� VaR at confidence level α: P&L quantile xSt

(

ezασt

√
τ − 1

)

expressed as a positive number:

VaRt(α, τ) = (−1)× xSt

(

ezασt

√
τ − 1

)

� Normal is a symmetric distribution⇒ zα = −z1−α

� VaR slightly larger than for long position, since er − 1 > 1− e−r

� Approximation xStzασt gives same value as for long

� Continuing the example: VaRt(0.99, 1) = $16 206.10
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Value-at-Risk

Computing VaR for one risk factor

VaR for short positions

Historical simulation VaR for short positions

� Basic simulation approach unchanged

� Several equivalent ways to identify VaR scenario in return terms

� Use a high (i.e. α) quantile of historical return series
� Use low (1− α) order statistic of (−1)× historical returns
� Sort the returns in reverse order, and then use the rank

corresponding to a low quantile
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Computing VaR for one risk factor

VaR for short positions

Pitfalls in using less-common quantile definitions

� Arise from asymmetric definition of distribution function

� Example: historical simulation VaR of long and short S&P 500
position, α = 0.99 and m = 503

� Linear interpolation using order statistic of (−1)× original series
between r̃ (5) and r̃ (6), the 5th and 6th smallest

� Linear interpolation using original order statistics between r̃ (m−5) and
r̃ (m−6), the 6th and 7th largest
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Computing VaR for one risk factor

VaR for short positions

Historical simulation VaR for short position
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Upper tail of original log returns

Purple points denote log return observations in the tails. Orange points denote
quantiles using ⌈(1 − α)m⌉-th order statistic.
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Value-at-Risk

Comparison of VaR computation approaches

Overview of Value-at-Risk

Computing VaR for one risk factor

Comparison of VaR computation approaches
Advantages and disadvantages of the techniques
Effect of user settings
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Value-at-Risk

Comparison of VaR computation approaches

Advantages and disadvantages of the techniques

Capturing the tails

� Monte Carlo almost identical to parametric for simple/linear
portfolios

� Simulations merely reflect the simulated distribution
� Monte Carlo becomes useful in more complex portfolios (options,

other non-linear assets)
� Simulated risk factor returns become inputs into pricing models

� Historical simulation may differ greatly from Monte Carlo or
parametric

� Historical simulations may have thicker or thinner tails than Monte
Carlo or parametric

� Depends on length of historical look-back period
� How far back should we look?

� Depends on purpose of estimate: recurrent losses or extreme events?
� How to treat the period mid-2007 to date?
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Comparison of VaR computation approaches

Advantages and disadvantages of the techniques

Comparison of VaR computation approaches
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Computed for S&P 500 index on 28Aug2013. Kernel density estimates for Monte
Carlo simulations (black) and of historical returns (red). Color-coded vertical grid lines
placed at 0.01 quantiles of each distribution.
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Value-at-Risk

Comparison of VaR computation approaches

Advantages and disadvantages of the techniques

Incorporating conditionality

� Parametric and Monte Carlo VaR much more responsive to recent
returns than historical simulation

� Sluggish responsiveness of historical simulation mitigated by shorter
look-back period

� Historical simulations may have thicker or thinner tails than Monte
Carlo or parametric

� Shorter observation intervals may miss tail events
� Longer observation intervals may produce results deviating from

current return distribution (e.g. volatility regime)
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Comparison of VaR computation approaches

Advantages and disadvantages of the techniques

VaR responsiveness to shocks
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Time series of VaR estimates for long position in the S&P 500 index, daily, 03Jan2006
to 30Dec2016, expressed as returns in percent. Parametric estimates use a decay
factor of 0.94, historical simulation estimates use 2 or 5 years of daily return data.
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Value-at-Risk

Comparison of VaR computation approaches

Effect of user settings

Dependence of VaR on confidence level and horizon
� Parametric VaR increases with both horizon τ and confidence level
α

� z1−α = Φ−1(1− α) becomes a larger-magnitude negative number as
α increases

� −z1−ασt

√
τ follows the square-root-of-time rule

� VaR computed via Monte Carlo and historical simulation increases
with confidence level

� But if there is strong mean reversion in return volatility, VaR
computed via historical simulation may be smaller at a longer than
at a shorter horizon

� Table displays −z1−ασt

√
τ with σt = 0.0069105, for different values

of τ and confidence level α (in percent)

α = 0.95 α = 0.99 α = 0.995

τ = 1 1.13667 1.60762 1.78002
τ = 5 2.54168 3.59475 3.98025
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